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Introduction

The solution of the 2-D Steady state Inverse Heat Conduction 
Problem (SIHCP), by using the surface temperature distribution as 
input data, enables to estimate the local  heat transfer coefficient, 
an important parameter in heat exchangers design.

Although SIHCP can be regarded as a special case of the Unsteady 
state Inverse Heat Conduction Problem , some caution is needed in 
the application of standard inverse solution strategies to this particular 
problem: destructive effect of noise which is amplified in the 
steady case by the necessity of estimating the wanted information 
from the signal Laplacian and not from the signal first temporal
derivative.
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Introduction
In the present work a simulated noisy signal, representing the 
experimental input data of the SIHCP with convective thermal 
boundary conditions, is considered in order to compare different
solution techniques. 

In particular the temperature distribution occurring on aluminum plate, 
exposed on one side to a forced turbulent air flow, is simulated. 

INPUT
the temperature map

UNKNOWN
local heat transfer



Test case

λ⋅
=

∂
∂

+
∂

∂
s

yxg
y

yxT
x

yxT ),(),(),(
2

2

2

2

∞−
=

T)y,x(T
)y,x(g)y,x(h



Test case

The signal has been 
mapped on a discrete 
domain with 600×400 
equally spaced elements.

A random additive noise 
with a standard deviation of 
0.1 K has been  imposed. 

(thermographic systems)

In particular:
600mm x 400mm x 3mm  aluminum plate, ΔT = 10 K,
turbulent flow convection (h shows a moderate dependence from x) 



Solution techniques

Among the techniques available in literature for the solution of inverse 
heat transfer problems, these ones appear the most suitable for this 
particular application:

the “forced matching technique”;

the “Wiener filtering technique”;

the “Conjugate Gradient Method with adjoint problem formulation”.



Forced matching

The temperature distribution obtained by numerically solving the
corresponding direct problem, is forced to match the experimental 
noisy data.

where Tn
NUM is temperature distribution obtained by solving 

numerically the conduction problem imposing hn
tot as a convective 

heath transfer coefficient; while TEXP is the experimental temperature 
map.
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Wiener filtering
Consisting in two consecutive applications of the Wiener filter, 
removes from the raw temperature data the unwanted experimental noise 
by making the direct calculation of the signal’s Laplacian feasible. 

The filtering function uses a pixel-wise adaptive filtering procedure based 
on statistics estimated from a local neighborhood of each data point. 

For a successful application, it is necessary to adjust the range of action 
of the filter, defined by the size of the pixel's neighborhood η.
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Conjugate Gradient Method with 
adjoint problem formulation

CGM handles the ill-posed nature of the problem by reformulating the 
problem as a well-posed problem by minimizing  the squared 
difference between measured and estimated temperature discrete data.
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It is a gradient-based optimization procedure: it searches 
iteratively in this direction the minimum of the objective function.

Under the adjoint equation approach, such minimization procedure 
requires the solution of auxiliary problems, known as the sensitivity
and the adjoint problem. 



Conjugate Gradient Method with 
adjoint problem formulation
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sensitivity problem adjoint problem

stopping criterion: discrepancy principle 



Results: Forced matching
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Surface heat flux  and convective heat transfer coefficient distribution 
along the domain centerline.



Results: Forced matching

PROS: easy to implement, requires limited computational
resources, effective also with a low signal-to-noise ratio.

CONS: a poor effectiveness in terms of local estimation capability 
(although the average values are restored with sufficient accuracy).
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Results: Forced matching
good performance if a spatial averaging filter is applied to the results

Surface heat flux  and convective heat transfer coefficient distribution 
along the domain centerline



Results: Wiener filtering
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Results: Wiener filtering

PROS: a good performance , limited computational resources 
required.

CONS: confirms its well-known limit close to the border of the 
domain , there is not a clear criterion to chose window size of the filter.
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Results: CGM
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along the domain centerline.



Results: CGM

PROS: the CGM, if compared to the other techniques, shows, with 
regards to this problem, a better performance. 

CONS: quite  complex to implement, problems close to the 
domain’s boundary.
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CGM: domain’s boundary
Although the CGM, here formulated with the adjoint problem, 
converges rapidly to the exact solution it has the major defect of 
being incapable of recovering the value of the unknown function close 
to the domain’s boundary. 

In fact the vanishing of the gradient of the conjugate gradient 
direction at the boundary forces the unknown function to be never 
updated along the iterative process. 

Possible solutions:
- direct differentiation method (impracticable);
- supposing a certain distribution of the unknown function.

Luckily the error damps out by 
moving towards the central region



Results: CGM
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Conclusions

The accuracy of the three solution methods has been quantified by 
means of an estimation error:
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Forced matching

E ≈ 14%

Forced matching (avarage)

E ≈ 0.5%

Wiener filtering

E ≈ 0.1%

CGM

E ≈ 0.02%
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